3.3.19 \(\int \frac {(a+b \text {arccosh}(c x))^2}{(d-c^2 d x^2)^{5/2}} \, dx\) [219]

3.3.19.1 Optimal result
3.3.19.2 Mathematica [A] (warning: unable to verify)
3.3.19.3 Rubi [C] (verified)
3.3.19.4 Maple [B] (verified)
3.3.19.5 Fricas [F]
3.3.19.6 Sympy [F]
3.3.19.7 Maxima [F]
3.3.19.8 Giac [F]
3.3.19.9 Mupad [F(-1)]

3.3.19.1 Optimal result

Integrand size = 26, antiderivative size = 331 \[ \int \frac {(a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=-\frac {b^2 x}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {-1+c x} \sqrt {1+c x} (a+b \text {arccosh}(c x))}{3 c d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {2 x (a+b \text {arccosh}(c x))^2}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {-1+c x} \sqrt {1+c x} (a+b \text {arccosh}(c x))^2}{3 c d^2 \sqrt {d-c^2 d x^2}}-\frac {4 b \sqrt {-1+c x} \sqrt {1+c x} (a+b \text {arccosh}(c x)) \log \left (1-e^{2 \text {arccosh}(c x)}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}-\frac {2 b^2 \sqrt {-1+c x} \sqrt {1+c x} \operatorname {PolyLog}\left (2,e^{2 \text {arccosh}(c x)}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}} \]

output
1/3*x*(a+b*arccosh(c*x))^2/d/(-c^2*d*x^2+d)^(3/2)-1/3*b^2*x/d^2/(-c^2*d*x^ 
2+d)^(1/2)+2/3*x*(a+b*arccosh(c*x))^2/d^2/(-c^2*d*x^2+d)^(1/2)+1/3*b*(a+b* 
arccosh(c*x))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/d^2/(-c^2*x^2+1)/(-c^2*d*x^2+d 
)^(1/2)+2/3*(a+b*arccosh(c*x))^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/d^2/(-c^2*d 
*x^2+d)^(1/2)-4/3*b*(a+b*arccosh(c*x))*ln(1-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/ 
2))^2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/d^2/(-c^2*d*x^2+d)^(1/2)-2/3*b^2*poly 
log(2,(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/d 
^2/(-c^2*d*x^2+d)^(1/2)
 
3.3.19.2 Mathematica [A] (warning: unable to verify)

Time = 1.64 (sec) , antiderivative size = 289, normalized size of antiderivative = 0.87 \[ \int \frac {(a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {\frac {a^2 c x \left (-3+2 c^2 x^2\right )}{-1+c^2 x^2}+a b \left (2 c x \left (2+\frac {1}{1-c^2 x^2}\right ) \text {arccosh}(c x)+\frac {\sqrt {\frac {-1+c x}{1+c x}} \left (-1+\left (4-4 c^2 x^2\right ) \log \left (\sqrt {\frac {-1+c x}{1+c x}} (1+c x)\right )\right )}{-1+c x}\right )+b^2 \left (-\frac {\text {arccosh}(c x) \left (\sqrt {\frac {-1+c x}{1+c x}} (1+c x)+c x \text {arccosh}(c x)\right )}{-1+c^2 x^2}+c x \left (-1+2 \text {arccosh}(c x)^2\right )-2 \sqrt {\frac {-1+c x}{1+c x}} (1+c x) \text {arccosh}(c x) \left (\text {arccosh}(c x)+2 \log \left (1-e^{-2 \text {arccosh}(c x)}\right )\right )+2 \sqrt {\frac {-1+c x}{1+c x}} (1+c x) \operatorname {PolyLog}\left (2,e^{-2 \text {arccosh}(c x)}\right )\right )}{3 c d^2 \sqrt {d-c^2 d x^2}} \]

input
Integrate[(a + b*ArcCosh[c*x])^2/(d - c^2*d*x^2)^(5/2),x]
 
output
((a^2*c*x*(-3 + 2*c^2*x^2))/(-1 + c^2*x^2) + a*b*(2*c*x*(2 + (1 - c^2*x^2) 
^(-1))*ArcCosh[c*x] + (Sqrt[(-1 + c*x)/(1 + c*x)]*(-1 + (4 - 4*c^2*x^2)*Lo 
g[Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)]))/(-1 + c*x)) + b^2*(-((ArcCosh[c* 
x]*(Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x) + c*x*ArcCosh[c*x]))/(-1 + c^2*x^ 
2)) + c*x*(-1 + 2*ArcCosh[c*x]^2) - 2*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x) 
*ArcCosh[c*x]*(ArcCosh[c*x] + 2*Log[1 - E^(-2*ArcCosh[c*x])]) + 2*Sqrt[(-1 
 + c*x)/(1 + c*x)]*(1 + c*x)*PolyLog[2, E^(-2*ArcCosh[c*x])]))/(3*c*d^2*Sq 
rt[d - c^2*d*x^2])
 
3.3.19.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 1.71 (sec) , antiderivative size = 278, normalized size of antiderivative = 0.84, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6316, 6314, 6327, 6328, 3042, 26, 4199, 25, 2620, 2715, 2838, 6329, 41}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 6316

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{(1-c x)^2 (c x+1)^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \int \frac {(a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{3/2}}dx}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 6314

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{(1-c x)^2 (c x+1)^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{1-c^2 x^2}dx}{d \sqrt {d-c^2 d x^2}}+\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 6327

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{1-c^2 x^2}dx}{d \sqrt {d-c^2 d x^2}}+\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 6328

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {c x-1} \sqrt {c x+1} \int \frac {c x (a+b \text {arccosh}(c x))}{\sqrt {\frac {c x-1}{c x+1}} (c x+1)}d\text {arccosh}(c x)}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {c x-1} \sqrt {c x+1} \int -i (a+b \text {arccosh}(c x)) \tan \left (i \text {arccosh}(c x)+\frac {\pi }{2}\right )d\text {arccosh}(c x)}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}+\frac {2 i b \sqrt {c x-1} \sqrt {c x+1} \int (a+b \text {arccosh}(c x)) \tan \left (i \text {arccosh}(c x)+\frac {\pi }{2}\right )d\text {arccosh}(c x)}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 4199

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}+\frac {2 i b \sqrt {c x-1} \sqrt {c x+1} \left (2 i \int -\frac {e^{2 \text {arccosh}(c x)} (a+b \text {arccosh}(c x))}{1-e^{2 \text {arccosh}(c x)}}d\text {arccosh}(c x)-\frac {i (a+b \text {arccosh}(c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}+\frac {2 i b \sqrt {c x-1} \sqrt {c x+1} \left (-2 i \int \frac {e^{2 \text {arccosh}(c x)} (a+b \text {arccosh}(c x))}{1-e^{2 \text {arccosh}(c x)}}d\text {arccosh}(c x)-\frac {i (a+b \text {arccosh}(c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2620

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}+\frac {2 i b \sqrt {c x-1} \sqrt {c x+1} \left (-2 i \left (\frac {1}{2} b \int \log \left (1-e^{2 \text {arccosh}(c x)}\right )d\text {arccosh}(c x)-\frac {1}{2} \log \left (1-e^{2 \text {arccosh}(c x)}\right ) (a+b \text {arccosh}(c x))\right )-\frac {i (a+b \text {arccosh}(c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}+\frac {2 i b \sqrt {c x-1} \sqrt {c x+1} \left (-2 i \left (\frac {1}{4} b \int e^{-2 \text {arccosh}(c x)} \log \left (1-e^{2 \text {arccosh}(c x)}\right )de^{2 \text {arccosh}(c x)}-\frac {1}{2} \log \left (1-e^{2 \text {arccosh}(c x)}\right ) (a+b \text {arccosh}(c x))\right )-\frac {i (a+b \text {arccosh}(c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \int \frac {x (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}+\frac {2 i b \sqrt {c x-1} \sqrt {c x+1} \left (-2 i \left (-\frac {1}{2} \log \left (1-e^{2 \text {arccosh}(c x)}\right ) (a+b \text {arccosh}(c x))-\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 \text {arccosh}(c x)}\right )\right )-\frac {i (a+b \text {arccosh}(c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 6329

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \left (\frac {b \int \frac {1}{(c x-1)^{3/2} (c x+1)^{3/2}}dx}{2 c}+\frac {a+b \text {arccosh}(c x)}{2 c^2 \left (1-c^2 x^2\right )}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}+\frac {2 i b \sqrt {c x-1} \sqrt {c x+1} \left (-2 i \left (-\frac {1}{2} \log \left (1-e^{2 \text {arccosh}(c x)}\right ) (a+b \text {arccosh}(c x))-\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 \text {arccosh}(c x)}\right )\right )-\frac {i (a+b \text {arccosh}(c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 41

\(\displaystyle \frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \left (\frac {a+b \text {arccosh}(c x)}{2 c^2 \left (1-c^2 x^2\right )}-\frac {b x}{2 c \sqrt {c x-1} \sqrt {c x+1}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \text {arccosh}(c x))^2}{d \sqrt {d-c^2 d x^2}}+\frac {2 i b \sqrt {c x-1} \sqrt {c x+1} \left (-2 i \left (-\frac {1}{2} \log \left (1-e^{2 \text {arccosh}(c x)}\right ) (a+b \text {arccosh}(c x))-\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 \text {arccosh}(c x)}\right )\right )-\frac {i (a+b \text {arccosh}(c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \text {arccosh}(c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

input
Int[(a + b*ArcCosh[c*x])^2/(d - c^2*d*x^2)^(5/2),x]
 
output
(x*(a + b*ArcCosh[c*x])^2)/(3*d*(d - c^2*d*x^2)^(3/2)) + (2*b*c*Sqrt[-1 + 
c*x]*Sqrt[1 + c*x]*(-1/2*(b*x)/(c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (a + b*A 
rcCosh[c*x])/(2*c^2*(1 - c^2*x^2))))/(3*d^2*Sqrt[d - c^2*d*x^2]) + (2*((x* 
(a + b*ArcCosh[c*x])^2)/(d*Sqrt[d - c^2*d*x^2]) + ((2*I)*b*Sqrt[-1 + c*x]* 
Sqrt[1 + c*x]*(((-1/2*I)*(a + b*ArcCosh[c*x])^2)/b - (2*I)*(-1/2*((a + b*A 
rcCosh[c*x])*Log[1 - E^(2*ArcCosh[c*x])]) - (b*PolyLog[2, E^(2*ArcCosh[c*x 
])])/4)))/(c*d*Sqrt[d - c^2*d*x^2])))/(3*d)
 

3.3.19.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 41
Int[1/(((a_) + (b_.)*(x_))^(3/2)*((c_) + (d_.)*(x_))^(3/2)), x_Symbol] :> S 
imp[x/(a*c*Sqrt[a + b*x]*Sqrt[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && Eq 
Q[b*c + a*d, 0]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4199
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_ 
.)*(x_)], x_Symbol] :> Simp[(-I)*((c + d*x)^(m + 1)/(d*(m + 1))), x] + Simp 
[2*I   Int[((c + d*x)^m*(E^(2*((-I)*e + f*fz*x))/(1 + E^(2*((-I)*e + f*fz*x 
))/E^(2*I*k*Pi))))/E^(2*I*k*Pi), x], x] /; FreeQ[{c, d, e, f, fz}, x] && In 
tegerQ[4*k] && IGtQ[m, 0]
 

rule 6314
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), 
x_Symbol] :> Simp[x*((a + b*ArcCosh[c*x])^n/(d*Sqrt[d + e*x^2])), x] + Simp 
[b*c*(n/d)*Simp[Sqrt[1 + c*x]*(Sqrt[-1 + c*x]/Sqrt[d + e*x^2])]   Int[x*((a 
 + b*ArcCosh[c*x])^(n - 1)/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, 
 x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]
 

rule 6316
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x 
_Symbol] :> Simp[(-x)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*d*(p + 
 1))), x] + (Simp[(2*p + 3)/(2*d*(p + 1))   Int[(d + e*x^2)^(p + 1)*(a + b* 
ArcCosh[c*x])^n, x], x] - Simp[b*c*(n/(2*(p + 1)))*Simp[(d + e*x^2)^p/((1 + 
 c*x)^p*(-1 + c*x)^p)]   Int[x*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a 
+ b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2* 
d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2]
 

rule 6327
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d1_) + ( 
e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbol] :> Int[(f*x)^m*(d1 
*d2 + e1*e2*x^2)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d1, e1, d2 
, e2, f, m, n}, x] && EqQ[d2*e1 + d1*e2, 0] && IntegerQ[p]
 

rule 6328
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), 
 x_Symbol] :> Simp[1/e   Subst[Int[(a + b*x)^n*Coth[x], x], x, ArcCosh[c*x] 
], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
 

rule 6329
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p 
+ 1))), x] - Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + 
 c*x)^p)]   Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x 
])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && 
GtQ[n, 0] && NeQ[p, -1]
 
3.3.19.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2434\) vs. \(2(313)=626\).

Time = 1.16 (sec) , antiderivative size = 2435, normalized size of antiderivative = 7.36

method result size
default \(\text {Expression too large to display}\) \(2435\)
parts \(\text {Expression too large to display}\) \(2435\)

input
int((a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(5/2),x,method=_RETURNVERBOSE)
 
output
2/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*(c* 
x-1)*(c*x+1)*x-4/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2 
*x^2-4)/d^3*c^6*arccosh(c*x)*x^7-2*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-1 
0*c^4*x^4+11*c^2*x^2-4)/d^3*c^4*arccosh(c*x)^2*x^5+14/3*b^2*(-d*(c^2*x^2-1 
))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*c^4*arccosh(c*x)*x^5+17/3 
*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*c^2*ar 
ccosh(c*x)^2*x^3-16/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11* 
c^2*x^2-4)/d^3*c^2*arccosh(c*x)*x^3-4/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^6* 
x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3/c*(c*x-1)^(1/2)*(c*x+1)^(1/2)+4/3*b^2*(-d 
*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/c/(c^2*x^2-1)*polylog( 
2,-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))+2/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^6* 
x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*c^4*(c*x-1)*(c*x+1)*x^5-4/3*b^2*(-d*(c^2* 
x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*c^2*(c*x-1)*(c*x+1)* 
x^3+2*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*( 
c*x-1)*(c*x+1)*arccosh(c*x)*x-4/3*b^2*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2) 
*(c*x+1)^(1/2)/d^3/c/(c^2*x^2-1)*arccosh(c*x)^2-4*b^2*(-d*(c^2*x^2-1))^(1/ 
2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*arccosh(c*x)^2*x+2*b^2*(-d*(c^2 
*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*arccosh(c*x)*x-2/3* 
b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*c^6*x^7 
+3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*c...
 
3.3.19.5 Fricas [F]

\[ \int \frac {(a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")
 
output
integral(-sqrt(-c^2*d*x^2 + d)*(b^2*arccosh(c*x)^2 + 2*a*b*arccosh(c*x) + 
a^2)/(c^6*d^3*x^6 - 3*c^4*d^3*x^4 + 3*c^2*d^3*x^2 - d^3), x)
 
3.3.19.6 Sympy [F]

\[ \int \frac {(a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {\left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate((a+b*acosh(c*x))**2/(-c**2*d*x**2+d)**(5/2),x)
 
output
Integral((a + b*acosh(c*x))**2/(-d*(c*x - 1)*(c*x + 1))**(5/2), x)
 
3.3.19.7 Maxima [F]

\[ \int \frac {(a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")
 
output
1/3*a*b*c*(sqrt(-d)/(c^4*d^3*x^2 - c^2*d^3) + 2*sqrt(-d)*log(c*x + 1)/(c^2 
*d^3) + 2*sqrt(-d)*log(c*x - 1)/(c^2*d^3)) + 2/3*a*b*(2*x/(sqrt(-c^2*d*x^2 
 + d)*d^2) + x/((-c^2*d*x^2 + d)^(3/2)*d))*arccosh(c*x) + 1/3*a^2*(2*x/(sq 
rt(-c^2*d*x^2 + d)*d^2) + x/((-c^2*d*x^2 + d)^(3/2)*d)) + b^2*integrate(lo 
g(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))^2/(-c^2*d*x^2 + d)^(5/2), x)
 
3.3.19.8 Giac [F]

\[ \int \frac {(a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")
 
output
integrate((b*arccosh(c*x) + a)^2/(-c^2*d*x^2 + d)^(5/2), x)
 
3.3.19.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2}{{\left (d-c^2\,d\,x^2\right )}^{5/2}} \,d x \]

input
int((a + b*acosh(c*x))^2/(d - c^2*d*x^2)^(5/2),x)
 
output
int((a + b*acosh(c*x))^2/(d - c^2*d*x^2)^(5/2), x)